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States on Partial Rings

M. Lynn Krause1 and Gottfried T. RuÈ ttimann1

Received July 4, 1997

Recently, the structure theory of JB*-triples has received considerable attention.
The reason is that JB*-triples and those JB*-triples which are dual spaces, the
JBW*-triples, not only form natural generalizations of Jordan C*-algebras and
C*-algebras, and Jordan W*-algebras and W*-algebras, but also provide a context
for the study of infinite-dimensional holomorphy and infinite-dimensional Lie
algebras. In a JBW*-triple the tripotents play the role of the projections in a W*-
algebra. In analogy to the projection lattice of a W*-algebra, we investigate the
partial ring of tripotents of JBW*-triple. Unlike on W*-algebras, states, i.e.,
positive normalized homomorphism s from the partial ring of tripotents of a JBW*-
triple into the partial ring of real numbers, have not yet been discussed in the
literature. We show that the partial ring of tripotents of a JBW*-triple admits a
unital set of Jauch±Piron states.

1. INTRODUCTION

Of late, in the context of quantum mechanical probability theory, the

algebraic structures studied have been of steadily increasing generality. Effect

algebras, which can contain isotropic elements, generalize orthoalgebras. S-
sets, in which no cancellation law is stipulated, generalize effect algebras

etc. (see, e.g., (Foulis and Bennett, 1994; Foulis et al., 1992, 1993; Gudder,

1995; HedlõÂkova and PulmannovaÂ, n.d.). In this paper, we approach the

problem so to speak from the opposite end, beginning with what is, in a

certain sense, the most general structure possible, and examining what results
when this structure becomes more specific in various ways.

The key concept of our approach is that of a partial ring, which serves as

the basic event structure on which to build a noncommutative nonassociative

probability theory. Section 2 is devoted to the algebraic part of partial rings.

In section 3 we develop the functional analytic framework of measure spaces

on partial rings in the tradition of Navara and RuÈ ttiman (1991), RuÈ ttimann
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(1989, 1994), RuÈ ttiman and Schindler (1987), and RuÈ ttimann and Wright

(1995).

In the last few years, Jordan triple systems have gained considerable
attention as algebraic structures which embrace both noncmmuative and

nonassociative algebras. JB*-triples and JBW*-triples not only accommodate

C*-algebras and W*algebras, JB*-algebras and JBW*-algebras, etc., they

also establish a link with bounded symmetric domains.

In Section 4 we investigate the partial ring of tripotents of a JBW*-

triple and prove the existence of a unital set of complete Jauch±Piron states
on this partial ring.

2. PARTIAL RINGS

A triple (U, ’ , % ), where U is a set, ’ is a subset of U 3 U, and %
is a map from ’ into U, is said to a partial ring.

Let (U, ’ , % ) be a partial ring. If the pair (u, v) of elements in U lies
in ’ , then we write u ’ v and call the pair (u, v) orthogonal. For an element

(u, v) in U 3 U we write u % v to assert that u ’ v and to denote the image

of (u, v) under the map % . For an orthogonal pair (u, v) in U, the element

u % v is called the sum of u and v.
A partial ring U is said to satisfy the right cancellation law if, for all

elements u, v, w in U,

u ’ v, u ’ w, and u % v 5 u % w Þ v 5 w

The partial ring U is said to satisfy the left cancellation law if for all elements
u, v, w in U,

u ’ v, w ’ v, and u % v 5 w % v Þ u 5 w

A partial ring which satisfies the left and the right cancellation laws is said
to satisfy the cancellation law.

A partial ring U is said to satisfy the right associative law if, for all

elements u, v, w in U, u ’ v and (u % v) ’ w implies v ’ w, u ’ (v % w)

and (u % v) % w 5 u % (v % w). The partial ring U is said to satisfy the

left associative law if, for all elements u, v, w in U, v ’ w and u ’ (v %
w) implies u ’ v, (u % v) ’ w and u % (v % w) 5 (u % v) % w. The partial

ring U is said to satisfy the associative law if it satisfies both the right and

left associative laws.

A partial ring (U, ’ , % ) is called symmetric or commutative if, for all

elements u, v P U with u ’ v,

v ’ u and u % v 5 v % u



States on Partial Rings 611

holds true. A symmetric partial ring satisfies the right cancellation law if an

only if it satisfies the left cancellation law if and only if it satisfies the

cancellation law. Likewise, it satisfies the right associative law if an only if
it satisfies the left associative law if and only if it satisfies the associative law.

Let (U, ’ , % ) be a partial ring. An element 0r , resp. 0l , is said to be

right neutral, resp. left neutral, if for all u P U, u ’ 0r , resp. 0l ’ u, and

u % 0r 5 u, resp. 0l % u 5 u. Clearly, in a partial ring which admits a right

neutral element 0r and a left neutral element 0l we have 0r 5 0l. An element

0 which is both right neutral and left neutral is called neutral. A right neutral
element 0r , resp. a left neutral element 0l , is called indecomposable if, for

elements u, v in U with u ’ v,

0r 5 u % v Þ v 5 0r, resp. 0l 5 u % v Þ u 5 0l

An element 1r in U is said to be a right unit, resp. left unit, in U if, for all

elements u in U, there exists an element v in U such that u ’ v, resp. v ’
u, and u % v 5 1r , resp. v % u 5 1l. An element 1 which is both a right

unit and a left unit is called a unit.
Let (U, ’ , % ) and (V, ’ , % ) be partial rings. A map f : U ® V is said

to be a homomorphism from U to V provided that, for all elements u, v in

U with u ’ v, f (u) ’ f (v) and f (u % v) 5 f (u) % f (v). A homomorphism

f : U ® V from U to V is said to be strict if, for elements u, v in U, f (u)

’ f (v) implies that u ’ v. Clearly, the identity map of U is a strict

homomorphism.
Let (U, ’ , % ) be a partial ring. We define binary relations # r , # l , and

# on U, for elements u and v in U, by

u # r v : Û $ w P U such that u ’ w and u % w 5 v

u # l v : Û $ w P U such that w ’ u and w % u 5 v

u # v : Û u # r v and u # l v

If the partial ring U is symmetric, then the three binary relations coalesce.

Theorem 2.1. Let (U, ’ , % ) be a partial ring which contains an indecom-

posable right neutral element 0r , resp. left neutral element 0l , resp. neutral

element 0. If U satisfies the right cancellation law, resp. left cancellation law,

resp. cancellation law, and the right associative law, resp. left associative

law, resp. associative law, then the binary relation # r , resp. # l , resp. # ,

defined above is a partial ordering on U. A right unit 1r , resp. left unit 1l ,
resp. unit 1, in U is the greatest element in the partially ordered set (U, # r),

resp. (U, # l), resp. (U, # ). Moreover, if U satisfies both the associative law

and the cancellation law, then the neutral element 0 is the smallest element

in the partially ordered set (U, # ).
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Proof. This is straightforward.

Notice that a homomorphism from a partial ring into a partial ring

preserves the partial orderings # r , # l , and # . These partial orderings are

studied in great detail in Krause (1996).

3. PRE-STATES ON PARTIAL RINGS

Notice that (R, R2, 1 ), where R denotes the real numbers, is a partial ring.

Let (U, ’ , % ) be a partial ring. In the sequel we assume that U Þ 0¤.
A homomorphism m : U ® R is called a measure on U, i.e., m is an element

in the real vector space RU and, for all elements u, v P U with u ’ v,

m (u % v) 5 m (u) 1 m (v)

We denote by M (U ) the set of all measures on U. Let t be the product

topology on RU, a locally convex Hausdorff topology.

Lemma 3.1. Let (U, ’ , % ) be a partial ring. The set M (U ) is a t -closed

subspace of RU.

Proof. Clearly, M (U ) is a subspace of RU and the t -limit of a converging

net ( m a ) a of M (U ) lies in M (U ).

A measure m is said to be bounded if there exists a positive real number

k such that, for all elements u in U, | m (u) | # k. The set of all bounded

measures on U, denoted by W (U ), is a subspace of M (U ).
A measure m is called positive if, for all elements u in U, m (u) $ 0.

Let J +(U ) be the collection of all bounded, positive measures on U. Notice

that J +(U ) is a t | W(U)-closed cone in W (U ). The elements of J (U ) : 5 J +(U ) 2
J +(U ) are called Jordan measures on U. The elements of S (U ) : 5 { m P
J +(U ): m (u) # 1, " u P U } are called pre-states on U, and S (U ) is referred

to as the pre-state space of U. Finally, the elements of V (U ) : 5 { m P S (U ):
$ u P U such that m (u) 5 1} are called states on U, and V (U ) is referred

to as the state space of U.

Lemma 3.2. Let (U, ’ , % ) be a partial ring. The pre-state space S (U )

of U is a t -compact convex subset of RU and J +(U ) 5 R+ S (U ).

Proof. The subset S (U ) is clearly convex. Notice that S (U ) coincides

with the set [0, 1]U ù M (U ). Since [0, 1]U is t -compact (Tychonov cube),
it follows by Lemma 3.1 that S (U ) is t -compact. The remaining assertion

follows easily.

Let (U, ’ , % ) be a partial ring. Since the subsets S (U ) and 2 S (U ) of

J (U ) are convex, it follows that the convex hull con( S (U ) ø 2 S (U )) of
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S (U ) ø 2 S (U ) coincides with the set {t m 2 (1 2 t) n : m , n P S (U ); t P
[0, 1]}. Since [0, 1] S (U ) # S (U ), it follows immediately that the convex

set con( S (U ) ø 2 S (U )) is circled and, by Lemma 3.2, we conclude that it
also is absorbing in the vector space J (U ). As a consequence, the mapping

| ? |U: J (U ) ® R+ defined, for elements m in J (U ), by | m |U ? : 5 inf{t .
0: m P t ? con( S (U ) ø 2 S (U ))} [Minkowski functional over con( S (U ) ø
2 S (U ))] is a seminorm on J (U ).

Lemma 3.3. Let (U, ’ , % ) be a partial ring and let S (U ) be the pre-

state space of U. The convex circled set con( S (U ) ø 2 S (U )) is a t -compact

subset of RU.

Proof. We define a mapping w : S (U ) 3 S (U ) 3 [0; 1] ® RU, for

elements m , n in S (U ) and t in the real interval [0; 1], by w ( m , n , t) : 5 t m
2 (1 2 t) n . By Lemma 3.2, S (U ) is t -compact and, therefore, by Tychonov’ s

Theorem, S (U ) 3 S (U ) 3 [0; 1] is a compact subset of the space RU 3 RU

3 R, equipped with the product topology determined by t on RU and the
standard euclidean topology on R. Clearly, w is a continuous map and,

consequently, its range, which coincides with con( S (U ) ø 2 S (U )), is a t -

compact subset of RU.

Theorem 3.4. Let (U, ’ , % ) be a partial ring. Let J (U ) ( # R U) be the

real vector space of Jordan measures and let J +(U ) be the cone of bounded

positive measures on U. Then:

(i) The map | ? |U: J (U ) ® RU defined above is a norm.

(ii)The topology determined by the norm | ? |U is finer than the restriction

t | J(U) of the product topology t on RU to the subspace J (U ).

(iii) The normed linear space (J (U ), | ? |U) is a Banach space.

(iv) The cone J +(U ) is | ? |U-closed.

(v) For every element m in J +(U ), | m |U 5 supu P U m (u). In particular,
S (U ) 5 { m P J +(U ): | m |U # 1} and every element in V (U ) is of norm one.

(vi) For every element m in J (U ) there exist elements l , n in J +(U )

such that m 5 l 2 n and | m |U 5 | l |U 1 | n |U.

Proof. (i) Let m be an element in J (U ). If | m |U is equal to zero, then

so is |n m |U , for all natural numbers n. Since con( S (U ) ø 2 S (U )) is circled,

we conclude that the element n m lies in 1 ? con( S (U ) ø 2 S (U )). It follows
that, for all natural numbers n, the set n m (U ) is contained in the real interval

[ 2 1; 1 1]. This shows that m (U ) coincides with {0} or, equivalently, m is

equal to zero. Therefore the seminorm | ? |U is a norm.

(ii) Let J (U )1 be the unit ball with respect to the norm | ? |U and let

J (U )1 8 be its interior. It follows that

J (U )o
1 # con( S (U ) ø 2 S (U )) # J (U )1 (1)
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Now let N be a zero-neighborhood in J (U ) with respect to the locally convex

topology t | J(U). By Lemma 3.3, the subset con( S (U ) ø 2 S (U )) is t | J(U)-

bounded. Therefore there exists a real number t . 0 such that con( S (U ) ø
2 S (U )) is contained in tN. By (1), the | ? |J(U)-open set (1/t)J (U )1 8 is a

subset of N. It follows that N is a zero-neighborhood in the norm-topology.

(iii) Let ( m n)n P N be a Cauchy sequence in the normed linear space (J (U ),

| ? |U). There exists a real number s . 0 such that, for all natural numbers

n, m n lies in sJ(U )1. By Lemma 3.3 (ii) and (1), sJ(U )1 is a t -compact subset

of RU. Therefore there exists a subnet ( n g ) g P G of ( m n)n P N which t -converges
to an element n in sJ(U )1. Specificially, there exists a map g from the upward-

directed set G into N with the properties that ( a ) n g 5 m g( g ) and ( b ) for every

element l in N, there exists an element g (l) in G such that, for all elements

g in G with g $ g (l), g ( g ) $ l holds true.

Let e . 0. Then there exists a natural number m such that, for all

elements n in N with n $ m, m n lies in the subset m m 1 ( e /2)J (U )1. Select
an element g (m) in G satisfying condition ( b ) above. It follows that, for all

elements g in G with g $ g (m), n g 5 m g( g ) lies in m m 1 ( e /2)J (U )1. Since

J (U )1 is t -closed and the net ( n g ) g P G t -converges to n , we conclude that n
is an element in m m 1 ( e /2)J (U )1. Hence, for all natural numbers n with

n $ m,

| n 2 m n|U # | n 2 m m|U 1 | m m 2 m n|U 5 # e /2 1 e /2 5 e

Therefore ( m n)n | ? |U-converges to n .

(iv) This follows by (ii) and the fact that J (U )+ is t | J(U)-closed.

(v) Let m be an element in the cone J +(U ) and let t be equal to

supu P U m (u). Clearly, m is an element in r S (U ), hence | m |U # r. On the other
hand, let s . 0 and suppose that m lies in s ? con( S (U ) ø 2 S (U )). Then

there exist elements l , n in S (U ) and an element t in the interval [0; 1] such

that m /s is equal to t l 2 (1 2 t) n . Then, for all elements u in U, m (u) 5
st l (u) 2 s (1 2 t) n (u) # s, thus t # s. This shows that t # | m |U.

(vi) Let m be an element in J (U ) of norm one. By a remark above, m
lies in con( S (U ) ø 2 S (U )). Therefore, there exist elements l , n in S (U )
and an element t in the interval [0; 1] such that m is equal to t l 2 (1 2 t) n . Then

1 5 | m |U # |t l |U 1 |(1 2 t) n |U 5 t| l |U 1 (1 2 t)| n |U # 1

By Lemma 3.2, the elements t l and (1 2 t) n lie in J +(U ).

Notice that, by Theorem 3.4(vi), the ordered normed vector space (J (U ),

J +(U ), | ? |U) associated with a partial ring (U, ’ , % ) is 1-generated (Asimov
and Ellis, 1980). Using the results of the next section, examples of partial

rings can be constructed for which the associated ordered normed vector

space of Jordan measures is not a base norm space. However, we have the

following result:
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Proposition 3.5. Let (U, ’ , % ) be a partial ring. If U possesses a left

or a right unit element, then the ordered normed vector space (J (U ), J +(U ),

| ? |U) is a complete base norm space and the state space V (L) of U is a base
of the cone J +(U ).

Proof. Suppose that U admits a right unit 1. Let u be an element in U.
Then there exists an element n in U such that u ’ n and u % n is equal to

1. Therefore, for every element m in J +(U ),

m (u) # m (u) 1 m (v) 5 m (u % v) 5 m (1) (2)

If m lies in V (U ), then there exists an element w in U such that m (w) is

equal to one. By (2), it follows that m (1) equals 1. On the other hand, if m
lies in J +(U ) and m (1) equals one, then, by (2), m is contained in S (U ) and,

therefore, in V (U ). Consequently, V (U ) coincides with the set { m P J +(L):
m (1) 5 1}, which is clearly convex. Let m be a nonzero element in J +(U ).

Then m (1) is different from 0; else, by (2), m (u) vanishes for all elements u
in U. It follows that m / m (1) lies in V (U ). Therefore, J +(U ) coincides with

R+ V (U ) and S (U ) is equal to [0; 1] V (U ).

4. THE PARTIAL RING OF TRIPOTENTS IN A JBW*-TRIPLE

Let A be a complex vector space. A triple product on A is a map {. . .}:
A 3 A 3 A ® A which is symmetric-bilinear in the outer variables and

conjugate-linear in the middle variable. The following `polarization formulas’

are valid for elements a, b, c in A:

2{a b c} 5 {(a 1 c)b (a 1 c)} 2 {a b a} 2 {c b c} (3)

4{a b a} 5 o
3

k 5 0

( 2 1)k{b 1 ika b 1 ika b 1 ika} (4)

An element u in A is said to be a tripotent provided that u is equal to

{u u u}. By 8(A ) we denote the collection of tripotents in A. Clearly, the

zero vector 0 is a tripotent.

For a pair (a, b) of elements in A we define a linear map D (a, b):

A ® A, for elements c in A, by D (a, b)(c) : 5 {a b c}. The map D (a, b) is

called the multiplication operator associated with the pair (a, b). For an
element a in A the conjugate linear map Q (a): A ® A defined, for elements

b in A, by Q (a)(b) : 5 {a b a} is called the quadratic operator associated
with a.

The following theorem is due to W. Kaup.
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Theorem 4.1. Let (A, | ? |) be a complex Banach space. Then there is

at most one triple product {. . .}: A 3 A 3 A ® A on A satisfying, for

elements a, b, c, d, and e in A,

{{a d e}b c} 2 {a d{e b c}} 5 {{a b c}d e} 2 {a{b c d}e} (5)

and satisfying the following conditions, for all elements a, b, c, in A:

(i) |{a b c}| # |a| ? |b| ? |c| [in particular, the triple product and the

mappings D (a, b), Q (a) are continuous].

(ii) |{a a a}| 5 |a|3.
(iii) The linear operator D (a, a) is hermitian [i.e., for every real number

t, the norm of the bounded operator exp(itD(a, a)) is equal to one].

(iv) The linear operator D (a, a) has positive spectrum.

Proof. See Kaup (1983).

A complex Banach space which admits such a triple product is said to

be a JB*-triple. The classes of C*-algebras, J*-algebras, and (nonassociative)

JB*-algebras are examples of complex Banach spaces which are JB*-triples.

A JB*-triple A which is the Banach space dual of a (necessarily unique)
Banach space A

*
is called a JBW*-triple. Examples of complex Banach

spaces which are JBW*-triples are given by W*-algebras, Hilbert spaces,

spin triples, (nonassociative) JBW*-algebras, M 8
3, the hermitian 3 3 3 matri-

ces with Cayley number entries with respect to the spectral norm, B 8
1,2, the

1 3 2 matrices with Cayley number entries with respect to the spectral norm,

etc. Notice that in a W*-algebra B the triple product satisfying the conditions
of Theorem 4.1 is given, for elements a, b, and c in B, by {a b c} 5 (ab*

c 1 cb* a)/2. Therefore, an element u in B is a tripotent if and only if it is

a partial isometry, i.e., uu* and u*u are self-adjoint idempotents in B.
In a JBW*-triple A the triple product is separately weak*-continuous.

Consequently, the multiplication operators and the quadratic operators are
weak*-continuous as well. The weak*-closure of the linear hull of the collec-

tion 8(A ) of tripotents in A coincides with A.
For each tripotent u in the JBW*-triple A, the weak*-continuous linear

operators Pj (u), j 5 0, 1, 2, are defined, for each element a in A, by

P2(u) 5 Q (u)2;

P1(u) 5 2(D (u, u) 2 Q (u)2),

P0(u) 5 idA 2 2D (u, u) 1 Q (u)2

The linear operators Pj (u), j 5 0, 1, 2 are projections onto the eigenspaces

Aj (u) of D (u, u) corresponding to eigenvalues j /2 and

A 5 A0(u) % A1(u) % A2(u)
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is the Peirce decomposition of A relative to u. For i, j, k equal to 0, 1, or 2,

the Peirce multiplication rules hold:

{Aj (u)Ak(u)A l(u)} # Aj 2 k 1 l(u)

when j 2 k 1 l is equal to 0, 1, or 2, and

{Aj (u)Ak(u)Al(u)} 5 {0} (6)

otherwise. Moreover,

{A A2(u) A0(u)} 5 {A A0(u) A2(u)} 5 {0} (7)

With respect to the separately weak*-continuous product (a, b) j a +
b 5 {a u b} and the norm-preserving involution a j a ² 5 {u a u}, A2(u)

is a JBW*-algebra with unit u. For details see Battaglia (1991), Barton et
al., (1987), Barton and Friedman (1987), Dineen (1986), Edwards et al.
(1993, 1996), Edwards and RuÈ ttimann (1992, 1996), Friedman and Russo

(1985, 1986) Hanche-Olsen and Stù rmer (1984), Loos (1975), Neher (1987),
and Wright (1977).

A pair u, v of elements in 8(A ) is said to be orthogonal , denoted by

u ’ v, if v is contained in A0(u). It can be seen that ’ is a symmetric binary

relation on 8(A ). Moreover, u ’ v if and only if {u u v} 5 0 if and only

if D (u, v) 5 0.

Let A be a JBW*-triple. It follows immediately that, for a pair u, v in
8(A ) with u ’ v, u 1 v lies again in 8(A ). We define a map % : ’ ® 8(A ),

for an orthogonal pair (u, v) of tripotents, by u % v 5 u 1 v. The partial

ring (8(A ), ’ , % ) is referred to as the partial ring of tripotents of the JBW*-

triple A.

Theorem 4.2. Let A be a JBW*-triple. Then the partial ring of tripotents

(8(A ), ’ , % ) of A is symmetric and satisfies both the cancellation and the
associative law. Moreover, the zero vector 0 is an indecomposable neutral

element.

Proof. It is easily seen that the partial ring 8(A ) is symmetric and

satisfies the cancellation law. Let u, v, and w be tripotents. Suppose that

u ’ v and (u % v) ’ w. It follows, by a remark above, that {v v w} 5
{u u % v w} 5 D (w, u % v)(u) 5 0, and, therefore, v ’ w. Similarly, it
follows that u ’ w. Consequently, {u u v % w} 5 {u u v} 1 {u u w} 5 0,

hence, u ’ (v % w). Clearly, (u % v) % w 5 u 1 v 1 w 5 u % (v % w).

The zero vector 0 is a neutral element in 8(A ). In fact, 0 is indecomposable.

To see this, suppose that (u, v) is an orthogonal pair in 8(A ) and that the

sum u % v coincides with 0. Then 0 5 {u u 0} 5 {u u u} 1 {u u v} 5 u.
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Proposition 4.3. Let A be a JBW*-triple and let (8(A ), ’ , % ) be the

partial ring of tripotents in A. Then 8(A ) possesses a right unit 1 if and only

if A coincides with {0}.

Proof. Suppose that 8(A ) has a right unit 1. Let u be any tripotent in

A. Then also 2 u is a tripotent in A. Therefore there exist tripotents v, w such

that u ’ v and 2 u ’ w and u % v 5 1 5 2 u % w. Then

u 5 {u u u % v} 5 {u u 1} 5 { 2 u 2 u 1} 5 { 2 u 2 u 2 u 1 w} 5 2 u

Hence, u is equal to 0. Since A coincides with the weak*-closure of the linear

hull of 8(A ), it follows that A coincides with {0}.

Theorem 4.4. Let A be a JBW*-triple and let (8(A ), ’ , % ) be the partial

ring of tripotents in A. Let u, v be elements in 8(A ). Then TFAE:

(i) u # v.
(ii) {u v u} 5 {v u v} 5 u.
(iii) {u v u} 5 u.

Proof. (i) Þ (ii): If u # v, then there exists a tripotent w such that
u % w is equal to v. Then

{u v u} 5 {u u 1 v u} 5 u 1 {u w u} 5 u

and

{v u v} 5 {u 1 w u u 1 w} 5 {u u u} 1 2{u u w} 1 {w u w} 5 u

(ii) Þ (iii): This is trivial.
(iii) Þ (i): This rather deep result was obtained in Friedman and Russo

(1985, Corollary 1.7).

For further properties of the partially ordered set (8(A ), # ) see Battaglia

(1991), and Edwards and RuÈ ttimann (1988, 1995). Also, the triple (8(A ),

# , ’ ) can be viewed as a generalized orthomodular poset (Krause, 1996;

Mayet-Ippolito, 1991).
We now turn our attention to the pre-states on the partial ring of tripotents

of a JBW*-triple.

Let A be a JBW*-triple. Let x be an element in A
*
. By Edwards and

RuÈ ttimann (1988, Lemma 3.6) and Friedman and Russo (1985, Proposition

2), there exists a smallest tripotent e (x) in the partially ordered set (8(A ),

# ) such that e (x)(x) is equal to |x|. Moreover, P2(e (x))
*
(x) 5 x and the

restriction of x to the JBW*-algebra A2(e (x)) is a faithful normal positive

functional.

For every norm-one element x in A
*
, we define a mapping m x: 8(A )

® C, for elements u in 8(A ), by

m x(u) 5 {u u e(x)}(x)
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Theorem 4.5. Let A be a JBW*-triple. Then, for every element x of

norm one in the pre-dual space A
*
, the functional m x is a state on the partial

ring 8(A ).

Proof. Let @(!) be the unital Banach algebra of bounded linear operators
on A. Let x be a norm-one element in A

*
. We define a linear functional zx

on @(!), for elements T in @(!), by zx(T ) : 5 (Te(x))(x). Since

| zx(T ) | # |Te(x)| ? |x| # |T| ? |e(x)| # |T| (8)

it follows that zx is norm-continuous and of norm less than or equal to one.

Let u be a tripotent in A. Since the bounded linear operator D (u, u) is

hermitian and positive, i.e., its numerical range is positive, we conclude, by

Bonsall and Duncan (1971, §5, Lemma 2) and by (8), that 0 # zx(D (u, u))

5 m z(u) # 1. Clearly,

m z(e (x)) 5 {e (x) e (x) e (x)}(x) 5 e (x)(x) 5 1 (9)

Let u, v be elements in 8(A ) with u ’ v. Then

m x(u % v) 5 (D (u % v, u % v)e (x))(x)

5 (D (u, u)e (x))(x) 1 2{u v e(x)}(x) 1 (D (v, v)e (x))(x)

5 m x(u) % m x(v)

Proposition 4.6. Let A be a JBW*-triple and let (8(A ), ’ , % ) be the

partial ring of tripotents. For every nonzero element u in 8(A ) there exists

a state m on 8(A ) such that

m (u) 5 1

Proof. Let u be a nonzero tripotent. By Edwards and RuÈ ttimann (1988,

Lemma 3.2), there exists an element x in A
*

of norm one such that u (x) is

equal to 1. Therefore, e (x) # u. Since m x is an isotone functional on the
partially ordered set (8(A ), # ), it follows that 1 5 m x(e (x)) # m x(u) # 1.

Theorem 4.7. Let A be a JBW*-triple. Let x be an element in A
*

of

norm one. Let (ui)i P I be a family of tripotents in A and suppose that the

supremum Ú i P Iui of this family exists in (8(A ), # ). If, for all elements i in I,

m x(ui) 5 0

then

m x 1 ~
i P I

ui 2 5 0
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Proof. For any element i in I and j equal to 0, 1, or 2, denote by ui,j the

element P j (e (x))ui. By the Peirce rules (6), (7), it follows that

0 5 {uiuie(x)}(x)

5 {ui,2ui,2e(x)}(x) 1 {ui,1ui,2e(x)}(P2(e (x)) * x)

1 {ui,1ui,1e(x)}(x) 1 {ui,0ui,1e(x)}(P2(e (x)) * x)

5 (ui,2 + e(x)u
² e(x)
i,2 )(x) 1 {ui,1ui,1e(x)}(x)

Clearly, the element ui,2 + e(x) ui,2
² e(x) lies in the positive cone A2(e (x))+ of the

JBW*-algebra A2(e (x)). By Friedman and Russo (1985, Lemma 1.5), the

same holds true for the element {ui,1 ui,1 e (x)}. Since the restriction of x to

A2(e (x)) is a faithful normal state, we conclude that

ui,2 + e(x)u
² e(x)
i,2 5 {ui,1ui,1e(x)} 5 0

Then ui,2 is equal to zero and, again by Friedman and Russo (1985, Lemma

1.5), the same holds for ui,1. Hence, for all elements i in I, the tripotent ui

lies in A0(e (x)) or, equivalently, ui ’ e (x). By Battaglia (1991, Corollary

3.10), it follows that Ú i P I ui ’ e (x). Therefore, by (7),

m x 1 ~
i P I

ui 2 5 H ~
i P I

ui ~
i P I

uie(x) J (x) 5 0
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